
PMH U.S.S.R.,Vol.49,No.4,pp.533-537,1985 (X21-8926/85 $10.00+0.00 

printed in Great Britain Bergamon Journals Ltd. 

ON THE PROBLEM OF THE STABILITY OF ORE-DINENSIONAL UNBOUNDED ELASTIC SYSTEMS* 

G.G. DENISOV, E.K. KUGUSHEVA and V.V. NOVIKOV 

An elastic, spring-supported beam along which a point mass is moving, is 
considered, and special features of the behaviour of such systems are 
pointed out. The stability of the system point mass-beam is studied. 
The velocity which, when exceeded, leads to instability of the beam is 
determined, and its dependence on the parameters of the system are studied. 

The motion of an inhomogeneity through the system is accompanied by the generation of 
waves. The wave pattern can be separated into a stationary part containing "frozen" waves in 
a coordinate system attached to the body, and non-stationary waves, appearing in the course 
of transients or generated by the instability of the system in question. 

Examples of the study of stationary waves are numerous, and appear in various branches 
of science. The study of non-stationary waves which can be used, in particular, in assessing 
the stability or instability of the body-medium systems, has received much less attention. 
Some fundamental problems related to the interaction of the body with a medium in relative 
motion, were solved in /l/. 

The investigation of stability of the linear, homogeneous unbounded system usually begins 
with the dispersion equation, which gives the relation between the wave frequency and wave 
vector with real components /2/. The appearance of an inhomogeneity in the system makes it 
impossible to limit oneself to considering the dispersion equation only. One of the exceptional 
features of these problems is the lack of smoothness of the solution or of any of its derivatives 
at the point at which the inhomogeneity occurs, and the solution should be sought in the class 
of function vanishing at infinity (the components of the wave vector are complex). The 
necessity may also arise of making the mode3 more complicated by e.g. introducing frictional 
forces. 

Below, an example of an elastic, spring-supported beam is used to illustrate certain 
aspects of the behaviour of the .unbounded medium interacting with a moving body. One- 
dimensional unbounded elastic systems were studied by a number of authors. The most interesting 
papers are /3, 4/ where, in particular, an instability was discovered caused by relative motion 
of the distributed mass of the pipe and a liquid flowing through it, In this connection the 
instability can be expected to appear also when a discrete mass moves along the elastic system 
(beam). It is natural to assume that the growing perturbation should concentrate near the 
position of the body whose oscillations impart energy to the beam, and should vanish (since 
the system is linear) at infinity. 

We shall consider the following model. A point mass m moves along an infinite beam 
resting on an elastoviscous support. The motion of the lljass consists of a motion with constant 
velocity Y along the OS axis, and of a motion along the 0~ axis together with the beam 
(Fig.1) without separating from it. The behaviour of the beam is studied with reference to 
the 0:~ system of coordinates moving along the C~J axis with velocity 1. i.e. E = I- ((. The 
equation of beam flexure and the conditions for matching the sclution at the position where 
the point mass appears, after changing to dimensionless coordinates, have the following form: 

In addition, the solution of the problem must satisfy the condition of boundedness when 
tE(--a, 00). 

Here the time and length scales are given, respectively, by ((2 (4d)j't and (Elj(id))"*, EI is 
the flexural rigidity, and p is the mass per unit length of the beam. 
characterizes the friction in the elastic support, 

The parameter n 
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is accelerationdueto gravity, and W'+ (6, 1) and IV..& t) are the flexures of the beam to the 
left and right of the moving mass, respectively. 

The solution of problem (1), (21 represents a super- 

Y 
position of the stationary IV,(e) and non-stationary flexure, 
which we shall denote in what follows by W&t) The stationary 
profile of the beam is described by the expression 

w,* (0 = era6 (A$coab*E +A&asin b&F,) 

A&+=*-$, &, = &*[2u~+ (b, f b_)*] + ~6_~-. D)* 

13) 

Fig.1 

The quantities (I$ bk 

whose real roots have the 

When h= 0, we have 

4=-p 
43’ --b+' i_ b_. 

b,Ab , ,+.p~'+b,'-b_e b_& 

are given by the equation 

k~+v2i.z-hd+1;=0 

form A,, t = --a -& ib,, ii,, , = o 4 <b_. 
(41 

In the case when v<l the beam profile is determined by relations (3). As c'- 1 (the 
velocity approaches its critical value adopted here as the scale of velocity Q t(4rlEJp-P)(I* /5/, 
the beam flexure increases without limit. When l>i, the problem has no solutions vanishing 
at infinity. 

Both W',(f) and B,(E) represent the sum of four sinusoidal functions. To find all con- 
stants entering IV, and If',. the condition that the solution merge at the point 5- ft is 
insufficient, i.e. the stationary flexure is not defined uniquely. To make the solution unique, 
we must change the fonnillation of the problem. We can, in particular, formulate certain 
supplementary conditions for M‘,(F). In the present case it is pertinent to use the principle 
of limit absorption /6/. To do this, we bring the friction into the discussion (damping at 
the support). The friction separates from the solution the terms decaying and growing at 
infinity, and we eliminate the latter. We can also obtain a unique solution for the conservative 
case by a passage to the limit h-0. 

Fig.2 shows the stationary profile of the beam at various values of t'. The sharp change 
(for small h) in the symmetric pattern of the stationary flexure at V< f to the asymmetric 
pattern at I.> 1. merits attention. The calculations were carried out for h= 0.05. Note that 
similar graphs were obtained in /8/, though the beam stability was not discussed either in 
these, nor in any other papers familiar to the authors. Thus the question of realizing the 
stationary solutions obtained remains open. 

Let us now consider the non-staticnac solution oftheproblem Cl!, 123. The solution is 
sought in the form 1) r:.r, = P-'~. Subst;tXzng It if_r! into (l!, we obtain 

i.' 7 (,, - ii - 1. (J. - ri.) T J ( =m 0 (5j 

In general, the fo.2~ complex rocts i, I 1..!.3.4j have at least one roct with a positive, 
and one with negative real part, since the s.2~ of the roots is zero by virtue of the fact 
that a term with i.' is missing from !5!. 

20 w 

Fig.2 

Three different versions of the distribntion of the 
rocts in the complex plane are possible, relative to the 
lriaginary axis, In the =irs+ i ti version the roots are on 
cne side, in the second three roots are or& the other side, 
an& finally we have two roots in each half-plane. 

Let US consider the last case, assuming, to be 
specific, that the real parts of the roots i., and i.: are 
negative, and those of i. and i,, are positive. The 
solutior, of (1) satisfying the condition for vanishing 
at infinity, takes the form 

Ii'_ (i, t) = P(&'i: -t_ A$$: 11‘- [i. 1) = P (&‘SF 2. &&t) 

By virtue of the linear character of the system, the 
load P does not appear, either in the equations of motion, 
or in the condition for matching the non-stationary SCi- 
utions. The influence of the load on the non-stationary 
motions manifests itself in terms of the mass M&0. When 
.?I = 0 f the equations in deviations have no singularities 
when E= 0, therefore the elastic beam, regarded as a 
dissipative, load-free system, is stable. 

The conditions for mathcin3 12) lead tc a hclogeneous system of algebraic eq'atlons In 

A,. .12. B,. li.. EC_‘;atlng tc zerc the determinant Cf this system we obtal- the "CreqSxlcy" e+atix 
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When M#O, the spectrum of the eigenfrequencies of the system is mixed, and point 
frequencies are found from the condition 

M = ,Z PJ 

determining the stability of the system. Solving Eq.(5) under this condition, for specific 
values of the parameters appearing in it, we can determine the stability of the stationary 
profile of the beam under the perturbations caused by the moving mass, from the sign of the 
real part of the roots p. Such an approach, however, is cumbersome and not very effective. 

In the present case the method of D-decomposition /g, lo/ is found to be suitable. 
Departing, for the time being, from the physical meaning of the problem, we shall regard M as 
a complex parameter and map the straight line p= iu.WE (-m.m) onto the complex plane M. We 
solve (5) for a certain value o = w+, and having sorted out Aj obtained in accordance with 
the signs of their real parts, we substitute them into condition (6) and then find M (w,,) 
Here, as when determining the uniqueness of the stationary solution, we must take into account 
the friction (hf. 0). no matter how small, since it is only when it is present, that the roots 
bi at p= io acquire real parts and can be sorted out. By carrying out the calculations for 
different OE C--0~ OG), we obtain the curve M(W) (the boundary of the D-decomposition) separat- 
ing the complex plane M into regions with different numbers of characteristic indices p with 
positive real parts. When M have positive real values belonging to the region in which all 
Rep< u. the system is stable. It becomes unstable, when the value of M is taken from the 
region in which at least one Firp>O From (5) and (6) it follows that the boundary of D- 
decomposition is symmetrical about the Re.\I axis. 

The fcllowing cases are possible, depending on the value of the parameter I. (Fig.3): 
L ~1; the curve II iwl does not intersect the Rc.11 axis; IV> I: the curve .1!(w) intersects the 

Rr .)I axis at one point N.\,). When I. decreases, 
the point .IJ, moves to the right along the Rr .\I 
axis and Al,- K as t -1. When the second parameter 
of the problem h increases, Al, also increases 
without affecting the qualitative behaviour of the 
curve .l/ 1 w,. 

We have assumed in the above discussion a 
specific distribution of the roots of (5: in the 
complex plane, namely that of two roots on each 
side cf the imagina_y axis. In other cases, when a 
different possible distribntion of the rocts is 
obtained, Eq.i61 changes its form and becomes 

F1g.3 

In the numerical program for conp' dting the boundary of D-decorposition, we have taken 
into account all possible distributicns of the roots Lj. therefore the results discussed here 
are quite general. 

Using the rule of hatchinc the boundary cf D-decccposition (thehatching indicates the 
side of the boundary conve rted into a region with a larger number cf roots with R?,,<II!. we 
concl;lde that the n>umber of rccts with positive real parts is sizaliest in the region D,, (Fig. 
3), i.e. the range of values of Brdfl~1..~I.) belcngs possibly to the domain of stability of the 
system. 

We shall show that the stationary profile of the bearr. is stable for fairly low values of 
the mass M; therefore D, represents the domain of stability of the system. 

With this purpose in mind, we shall use the equaticns of mction and the matching conditions 
in the coordinate system attached tc the beaz 

at the point I - 1'1 
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Fig.4 Fig.5 

We assume that the function U'(z. 1) is continuous on the set 2.i together with its first 
and second derivative. The solution of the problem must decay at infinity, therefore, in what 
follows, we shall assume that U'(z. I) decreases as I -_Im at least as rapidly as erP(---crl~I) 
('A is a positive number. 

In studying the stability we take the following functional as a measure of the perturba- 
tion (a prime and a dot denote differentiation with respect to I and t respectively, and a 
bar denotes a complex conjugate) : 

and consider the positive definite functional 

admitting aninfinitesimal upper bound. The latter follows from the relation (M is a positive 
number) 

H (W, u”) < ma\ (.V. 1) s (14‘. W) 

At some fixed value of the parameter h there exists a finite neighbourhood of the point 
M = 0 at which the functional H(U'. U"j decreases with time by virtue of Eq.(E) and the 
conditions at the point I= VI (9). Indeed, the condition 

H'- __2h y .._I II II dr--.!I (ll“(?~” + ,ir-~,, - r- (2ll-“+r11’“)] l,=,:<O 

-r 

clearly holds when the inequality 

holds. The integral on the left-hand side of the inequality is positive, and bomded by virtue 
of the exponential decrease in the function U(r.fi as .--+~r. The expressions within the 
braces are finite, since the functions in them are bounded for JE (-~.a-). 

Since the conditions of the theorem of the straight Lyapunov method on stability /ll/ 
hold, we conclude that the system in question is stable for fairly small values of the para- 
meter M. This, together with the D-decomposition of the complex M plane, leads to the final 
result: D,, is the domain of stability, therefore the "stationary" profile of the beam is 
stable at values of K (regarded as a physical parameter) from the interval l(1.N.) The 
conditions of stability (10) can easily be explained in physical terms. On the left we have 
a term reducing the energy of the system by virtue of the dissipation in the viscoelastic 
support, and on the right we have the term increasing the energy due to the oscillation of 
the mass M. When h increases while 14 and I decrease, the stability of the system increases. 

We note that the inhomogeneity in the unbounded system can be caused not only by the 
point mass, but also by other factors (e.g. by an elastic point force). However, not every 
inhomogeneity arising during the motion along the beam can excite waves whose amplitudes 
increase with time. In particular, in the case of an elastic point force such wave excitation 
is not observed at any value of u. This can be shown using the direct Lyapunov method by 
just changing the form of the functional HfW‘. U'). 

Fig.4 shows the boundary 1, 2, 3 of the domain of stability in the mass-velocity plane 
for the values of the parameter I, = 0.1; 0.5: (1.9. The domain of stability lies to the left of 
the curve M(V) whose asymptotes are the straight line L.=l, and the 01 axis. At small 

values of the mass the system is stable over a wide range of velocities i0.1,~). An increase in 
M is accompanied by a reduction in the domain of stability, and 1. - 1. 
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Fig.5 shows the form of the oscillations of the beam at M= hf., i.e. at the boundary of 
the domain of stability. The values Bt = 0, rid, r/2, 3~14 correspond to the curves l-4. A wave 

appears near the mass M, moving in a direction opposite to thatof the mass. However, the 

directions of the motions of the mass nad the wave with respect to the beam are the same. 
We note that the system in question can be used as a model of a pipe with a flow of fluid, 

made thicker at some place (increased mass) , in the case when the rstio of the running mess of 
the pipe and the fluid is small. If the ratio is not small, then additional terms must be 
introduced in (1) /3/. 
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AVERAGED DESCRIPTION OF THE OSCILLATIONS IN A ONE-DIMENSIONAL, 
RANDOMLY INHOMOGENEOUS MEDIUM* 

A.YU. BELYAEV 

The Cauchy problem fcr a wave equation with coefficients depending randomly 
on the spatial coordinate is considered. An equation describing the 
evolution of the expectation of the solution is derived assurr.i.ng that the 
fluctuations of the coefficients and the correlation radius are small. 
The averaged equation, unlike the initial equation, is irreversible with 
respect tc time, and has the form of a one-dimensional equation of motion 
of a viscoelastic material. The coefficient of effective viscosity obtained 
is found to be proporticnal tc the intensity of fluctuations of the 
random characteristics of the inhomogeneous medium. 

Numerous problems of the propagation of elastic, electromagentic and other waves in an 
inhomogeneous medium, rediice to soiving the equation 

(1) 

with initial data for I 
of the medium oscillate 
of the wave propagation 

= 0. If the functions P(Z) and (1 (r) characterizing the properties 
rapidly, then the problem arises of producing an averaged description 
process. In randomly inhomogeneous continua the non-coherent character 

of wave dispersion by inhomogeneities of the medium produces a decay of solutions, which 
leads to the irreversibility of the averaged equations. 
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